Definitions LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef  b == if b True else False fi
Thm*  b:b  Prop
decidableDef  Dec(P) == P  P
Thm*  A:Prop. Dec(A Prop
exists_uniqueDef  !x:AP(x) == x:A. x is the x:AP(x)
Thm*  A:Type, P:(AProp). (!x:AP(x))  Prop
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
is_theDef  x is the u:AP(u) == P(x) & (u:AP(u u = x)
Thm*  A:Type, P:(AProp), x:A. (x is the x:AP(x))  Prop

About:
boolifthenelseassertfunctionuniverseequalmemberprop
impliesandorfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions LogicSupplement Sections DiscrMathExt Doc