| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
exists_unique | Def !x:A. P(x) == x:A. x is the x:A. P(x) |
| | Thm* A:Type, P:(AProp). (!x:A. P(x)) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
is_the | Def x is the u:A. P(u) == P(x) & (u:A. P(u) u = x) |
| | Thm* A:Type, P:(AProp), x:A. (x is the x:A. P(x)) Prop |