Definitions LogicSupplement Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef  b == if b True else False fi
Thm*  b:b  Prop
decidableDef  Dec(P) == P  P
Thm*  A:Prop. Dec(A Prop
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
inhabited_uniquelyDef  !A == {x:Ay:Ax = y }
inhabitedDef  A == A

About:
boolifthenelseassertsetequalmember
propimpliesandorfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions LogicSupplement Sections DiscrMathExt Doc