Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
decidableDef Dec(P) == P  P
Thm* A:Prop. Dec(A Prop
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
natDef  == {i:| 0i }
Thm*   Type
nat_plusDef  == {i:| 0<i }
Thm*   Type
sfa_doc_exteqDef A =ext B == (X:AX  B) & (X:BX  A)
sfa_doc_sexprDef Sexpr(A) == rec(T.(TT)+A)
Thm* A:Type. Sexpr(A Type
topDef Top == Void(given Void)
Thm* Top  Type

About:
productboolbfalseifthenelseassertdecidablevoidintnatural_numberless_than
unionsetisectrecsfa_doc_extequniversemember
toppropimpliesandorfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc