| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
band | Def pq == if p q else false fi |
| | Thm* p,q:. (pq) |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |
|
sfa_doc_exteq | Def A =ext B == (X:A. X B) & (X:B. X A) |
|
sfa_doc_sexpr | Def Sexpr(A) == rec(T.(TT)+A) |
| | Thm* A:Type. Sexpr(A) Type |
|
top | Def Top == Void(given Void) |
| | Thm* Top Type |