Definitions SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
absvalDef  |i| == if 0i i else -i fi
Thm*  x:. |x 
assocedDef  a ~ b == a | b & b | a
Thm*  a,b:. (a ~ b Prop
dividesDef  b | a == c:a = bc
Thm*  a,b:. (a | b Prop
equiv_relDef  EquivRel x,y:TE(x;y)
Def  == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
Thm*  T:Type, E:(TTProp). (EquivRel x,y:TE(x,y))  Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
ifthenelseintnatural_numberminusmultiplyless_thansetfunctionuniverse
equalmemberpropimpliesandfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions SimpleMulFacts Sections DiscrMathExt Doc