| Some definitions of interest. |
|
absval | Def |i| == if 0 i i else -i fi |
| | Thm* x: . |x|  |
|
assoced | Def a ~ b == a | b & b | a |
| | Thm* a,b: . (a ~ b) Prop |
|
divides | Def b | a == c: . a = b c |
| | Thm* a,b: . (a | b) Prop |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |