| Some definitions of interest. |
|
absval | Def |i| == if 0i i else -i fi |
| | Thm* x:. |x| |
|
assoced | Def a ~ b == a | b & b | a |
| | Thm* a,b:. (a ~ b) Prop |
|
divides | Def b | a == c:. a = bc |
| | Thm* a,b:. (a | b) Prop |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |