Thms action sets Sections AutomataTheory Doc

factorial Def (n)! == if n=0 1 else n(n-1)! fi (recursive)

Thm* n:. (n)!

nat Def == {i:| 0i }

Thm* Type

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_than
intint_eqbtruebfalseboolsetnatural_number
universerecursive_def_noticeifthenelsemultiplysubtract