Thms action sets Sections AutomataTheory Doc

el_counter Def ||e:L|| == if null(L)0 ;e=hd(L)1+||e:tl(L)|| else ||e:tl(L)|| fi (recursive)

Thm* n:, L:*. ||n:L||

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

nat Def == {i:| 0i }

Thm* Type

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

About:
!abstractionlist_indbtruebfalsealluniverselistmember
boolnilint_eqintimpliesfalsepropless_than
setnatural_numberrecursive_def_noticeaddtokenifthenelse