PrintForm Definitions action sets Sections AutomataTheory Doc

At: n0n1 irregular 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1

1. S: ActionSet()
2. s: S.car
3. q: S.car
4. n:
5. f: S.carn
6. g: nS.car
7. g o f = Id
8. f o g = Id
9. k:. (S:n0n1(k)s) = q
10. i: (n+1)
11. j: (n+1)
12. i < j
13. f((S:([1]i)s)) = f((S:([1]j)s))
14. (S:([1]i)s) = (S:([1]j)s)
15. k:
16. (([0]j) @ ([1]i)) = (([0]k) @ ([1]k))
17. k = i
18. j||1:nil||+i(1+||1:nil||) = k||1:nil||+k(1+||1:nil||)
19. ||1:([0]j)||+||1:([1]i)||0

False

By: RWH (RecUnfoldC `el_counter`) 18

Generated subgoal:

118. jif null(nil)0 ;1=hd(nil)1+||1:tl(nil)|| else ||1:tl(nil)|| fi +i(1+if null(nil)0 ;1=hd(nil)1+||1:tl(nil)|| else ||1:tl(nil)|| fi) = kif null(nil)0 ;1=hd(nil)1+||1:tl(nil)|| else ||1:tl(nil)|| fi +k(1+if null(nil)0 ;1=hd(nil)1+||1:tl(nil)|| else ||1:tl(nil)|| fi)
19. ||1:([0]j)||+||1:([1]i)||0
False


About:
falseintfunctionnatural_numberequalalladd
less_thanapplyconsnillistmultiply