PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump theorem 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. N:
4. s: S.car
5. f: S.carN
6. g: NS.car
7. g o f = Id
8. f o g = Id
9. A: Alph*
10. N < ||A||
11. i: ||A||
12. j: ||A||
13. i < j
14. f((S:A[||A||-i..||A||]s)) = f((S:A[||A||-j..||A||]s))
15. (S:A[||A||-i..||A||]s) = (S:A[||A||-j..||A||]s)

(S:((A[0..||A||-j]) @ (A[||A||-j..||A||-i]0)) @ (A[||A||-i..||A||])s) = (S:As)

By: RecCaseSplit `lpower`

Generated subgoals:

116. 0 = 0
(S:((A[0..||A||-j]) @ nil) @ (A[||A||-i..||A||])s) = (S:As)
216. 0 = 0
(S:((A[0..||A||-j]) @ (A[||A||-j..||A||-i]-1) @ (A[||A||-j..||A||-i])) @ (A[||A||-i..||A||])s) = (S:As)


About:
equalnatural_numbersubtractuniversefunction
listless_thanapplynilminus