Thms automata 4 Sections AutomataTheory Doc

auto_iso Def A1 A2 == f:(S1S2). Bij(S1; S2; f) & (s:S1, a:Alph. f(A1(s,a)) = A2(f(s),a)) & f(InitialState(A1)) = InitialState(A2) & (s:S1. FinalState(A1)(s) = FinalState(A2)(f(s)) )

Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop

auto_lang Def LangOf(DA)(l) == DA(l)

Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)

automata Def Automata(Alph;States) == (StatesAlphStates)States(States)

Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}

connected Def Con(A) == s:St. l:Alph*. (Result(A)l) = s

Thm* Alph,St:Type, A:Automata(Alph;St). Con(A) Prop

lang_eq Def L = M == l:Alph*. L(l) M(l)

Thm* Alph:Type{i}, L,M:LangOver(Alph). L = M Prop{i'}

refine Def A1 A2 == x,y:Alph*. (Result(A1)x) = (Result(A1)y) S1 (Result(A2)x) = (Result(A2)y) S2

Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop

accept_list Def DA(l) == FinalState(DA)(Result(DA)l)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l)

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

assert Def b == if b True else False fi

Thm* b:. b Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

About:
!abstractionimpliesallpropmemberlist_indbtrue
bfalseuniverselistboolniltokennatural_number
equalapplyfunctionexistsspreadproductand
ifthenelsetruefalseassertrecursive_def_notice