auto_iso |
Def A1 A2
== f:(S1 S2).
Bij(S1; S2; f)
& ( s:S1, a:Alph. f( A1(s,a)) = A2(f(s),a))
& f(InitialState(A1)) = InitialState(A2)
& ( s:S1. FinalState(A1)(s) = FinalState(A2)(f(s)) )
Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop
|
auto_lang |
Def LangOf(DA)(l) == DA(l)
Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)
|
automata |
Def Automata(Alph;States) == (States Alph States) States (States  )
Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}
|
connected |
Def Con(A) == s:St. l:Alph*. (Result(A)l) = s
Thm* Alph,St:Type, A:Automata(Alph;St). Con(A) Prop
|
refine |
Def A1 A2
== x,y:Alph*. (Result(A1)x) = (Result(A1)y) S1  (Result(A2)x) = (Result(A2)y) S2
Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop
|
accept_list |
Def DA(l) == FinalState(DA)(Result(DA)l)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l) 
|
compute_list |
Def Result(DA)l
== if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi
(recursive)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St
|
lang_eq |
Def L = M == l:Alph*. L(l)  M(l)
Thm* Alph:Type{i}, L,M:LangOver(Alph). L = M Prop{i'}
|
so_lambda2 | Def ( 1,2. b(1;2))(1,2) == b(1;2)
|
DA_fin |
Def FinalState(a) == 2of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States  
|
DA_init |
Def InitialState(a) == 1of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States
|
DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|