| auto_lang | Def LangOf(DA)(l) ==  DA(l)   Thm*  | 
| assert | Def  b == if b  True else False fi Thm*  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) Thm*  | 
| lang_eq | Def L = M ==  l:Alph*. L(l)   M(l) Thm*  | 
| lang_rel | Def L-induced Equiv(x,y) ==  z:A*. L(z @ x)   L(z @ y) Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| lang_auto | Def A(g) ==  < (  s,a. a.s),nil,g > 
 Thm*  | 
| languages | Def LangOver(Alph) == Alph*   Prop 
 Thm*  | 
| accept_list | Def DA(l)  == FinalState(DA)(Result(DA)l) Thm*  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) Thm*  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) Thm*  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) Thm*  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  a.(as' @ bs)  (recursive) 
 Thm*  | 
| compute_list | Def Result(DA)l
 == if null(l)  InitialState(DA) else  DA((Result(DA)tl(l)),hd(l)) fi
 (recursive) 
 Thm*  | 
| DA_fin | Def FinalState(a) == 2of(2of(a)) 
 Thm*  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h 
 Thm*  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t 
 Thm*  | 
| DA_act | Def  a == 1of(a) 
 Thm*  | 
| DA_init | Def InitialState(a) == 1of(2of(a)) 
 Thm*  | 
| null | Def null(as) == Case of as; nil  true  ; a.as'  false   
 Thm*  
 Thm* null(nil)  | 
| pi2 | Def 2of(t) == t.2 
 Thm*  | 
| pi1 | Def 1of(t) == t.1 Thm*  | 
About:
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |