| auto_lang | Def LangOf(DA)(l) ==  DA(l)   Thm*  | 
| automata | Def Automata(Alph;States) == (States   Alph   States)  States  (States    ) Thm*  | 
| connected | Def Con(A) ==  s:St.  l:Alph*. (Result(A)l) = s Thm*  | 
| finite | Def Fin(s) ==  n:  , f:(  n   s). Bij(  n; s; f) Thm*  | 
| lang_rel | Def L-induced Equiv(x,y) ==  z:A*. L(z @ x)   L(z @ y) Thm*  | 
| min_auto | Def MinAuto(Auto) == A(  l.Auto(l)  ) 
 Thm*  | 
| accept_list | Def DA(l)  == FinalState(DA)(Result(DA)l) Thm*  | 
| assert | Def  b == if b  True else False fi Thm*  | 
| compute_list | Def Result(DA)l
 == if null(l)  InitialState(DA) else  DA((Result(DA)tl(l)),hd(l)) fi
 (recursive) 
 Thm*  | 
| int_seg | Def {i..j  } == {k:  | i  k  <  j } Thm*  | 
| biject | Def Bij(A; B; f) == Inj(A; B; f)  &  Surj(A; B; f) Thm*  | 
| nat | Def  == {i:  | 0  i } Thm*  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  a.(as' @ bs)  (recursive) 
 Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| lang_auto | Def A(g) ==  < (  s,a. a.s),nil,g > 
 Thm*  | 
| DA_fin | Def FinalState(a) == 2of(2of(a)) 
 Thm*  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h 
 Thm*  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t 
 Thm*  | 
| DA_act | Def  a == 1of(a) 
 Thm*  | 
| DA_init | Def InitialState(a) == 1of(2of(a)) 
 Thm*  | 
| null | Def null(as) == Case of as; nil  true  ; a.as'  false   
 Thm*  
 Thm* null(nil)  | 
| lelt | Def i  j  <  k == i  j  &  j < k | 
| surject | Def Surj(A; B; f) ==  b:B.  a:A. f(a) = b Thm*  | 
| inject | Def Inj(A; B; f) ==  a1,a2:A. f(a1) = f(a2)  B   a1 = a2 Thm*  | 
| le | Def A  B ==  B < A Thm*  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
| pi2 | Def 2of(t) == t.2 
 Thm*  | 
| pi1 | Def 1of(t) == t.1 Thm*  | 
| not | Def  A == A   False Thm*  | 
About:
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |