min_auto |
Def MinAuto(Auto) == A( l.Auto(l) )
Thm* Alph,St:Type, Auto:Automata(Alph;St).
MinAuto(Auto) Automata(Alph;x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
|
accept_list |
Def DA(l) == FinalState(DA)(Result(DA)l)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l) 
|
lang_auto |
Def A(g) == < ( s,a. a.s),nil,g >
Thm* Alph:Type, L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))  ).
A(g) Automata(Alph;x,y:Alph*//(x L-induced Equiv y))
|
compute_list |
Def Result(DA)l
== if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi
(recursive)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St
|
DA_fin |
Def FinalState(a) == 2of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States  
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
DA_init |
Def InitialState(a) == 1of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|