Thms automata 5 Sections AutomataTheory Doc

min_auto Def MinAuto(Auto) == A(l.Auto(l))

Thm* Alph,St:Type, Auto:Automata(Alph;St). MinAuto(Auto) Automata(Alph;x,y:Alph*//(x LangOf(Auto)-induced Equiv y))

accept_list Def DA(l) == FinalState(DA)(Result(DA)l)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l)

lang_auto Def A(g) == < (s,a. a.s),nil,g >

Thm* Alph:Type, L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))). A(g) Automata(Alph;x,y:Alph*//(x L-induced Equiv y))

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

About:
!abstractionspreadalluniversefunctionproductmemberlist_ind
btruebfalselistboolniltokenimpliesnatural_number
recursive_def_noticeifthenelseapplypairlambdaconsquotient