PrintForm Definitions automata 5 Sections AutomataTheory Doc

At: homo is surj 1 1 3 1 1 1 2 1 1 1 1 1 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. c: StAlph*
5. Fin(Alph) & Fin(St)
6. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
7. h: Alph*Alph*
8. x,y:Alph*. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(x) = h(y)
9. x:Alph*. x = h(x) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
10. b1: Alph*
11. b2: Alph*
12. b1 LangOf(Auto)-induced Equiv b2
13. (Result(Auto)c(Result(Auto)h(b1))) = (Result(Auto)h(b1))
14. b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(b1) = h(b2)
15. (b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(b1) = h(b2))

c(Result(Auto)h(b1)) = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)

By: RW (AddrC [3;2] (HypC 14)) 13

Generated subgoals:

15. Fin(Alph)
6. Fin(St)
7. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
8. h: Alph*Alph*
9. x,y:Alph*. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(x) = h(y)
10. x:Alph*. x = h(x) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
11. b1: Alph*
12. b2: Alph*
13. b1 LangOf(Auto)-induced Equiv b2
14. (Result(Auto)c(Result(Auto)h(b1))) = (Result(Auto)h(b1))
15. b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(b1) = h(b2)
16. (b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(b1) = h(b2))
b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
213. (Result(Auto)c(Result(Auto)h(b1))) = (Result(Auto)h(b2))
14. b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(b1) = h(b2)
15. (b1 = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(b1) = h(b2))
c(Result(Auto)h(b1)) = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)


About:
equalquotientlistapplyuniverse
functionandallimplies