PrintForm Definitions automata 5 Sections AutomataTheory Doc

At: min auto sound 1 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. l: Alph*

Auto(l) FinalState(Auto)(Result(Auto)Result(A(l.FinalState(Auto)(Result(Auto)l)))l)

By: Inst Thm* L:LangOver(A). EquivRel x,y:A*. x L-induced Equiv y [Alph;LangOf(Auto)] THEN Inst Thm* L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))), l:Alph*. (Result(A(g))l) = l x,y:Alph*//(x L-induced Equiv y) [Alph;LangOf(Auto);l.FinalState(Auto)(Result(Auto)l)] THENL [Auto;Auto;Id;Id]

Generated subgoals:

15. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
(l.FinalState(Auto)(Result(Auto)l)) (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
25. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
6. l:Alph*. (Result(A(l.FinalState(Auto)(Result(Auto)l)))l) = l x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
Auto(l) FinalState(Auto)(Result(Auto)Result(A(l.FinalState(Auto)(Result(Auto)l)))l)


About:
assertapplylambdauniverselist
memberfunctionquotientbool