Thms automata 6 Sections AutomataTheory Doc

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

nat_plus Def == {i:| 0 < i }

Thm* Type

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberint_eq
btruebfalseintboolsetless_thannatural_number
universeandrecursive_def_noticeifthenelsemultiplysubtract