Thms automata 6 Sections AutomataTheory Doc

auto_lang Def LangOf(DA)(l) == DA(l)

Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)

auto_oddeven Def OddEven#n == < (s:(2n). a:n. (s+(2a)) rem (2n)),0,(s:(2n). s=0 s=(2n)-1) >

Thm* n:. OddEven#n Automata(n;(2n))

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

lang_rel Def L-induced Equiv(x,y) == z:A*. L(z @ x) L(z @ y)

Thm* A:Type, L:LangOver(A). L-induced Equiv A*A*Prop

nat Def == {i:| 0i }

Thm* Type

nat_plus Def == {i:| 0 < i }

Thm* Type

accept_list Def DA(l) == FinalState(DA)(Result(DA)l)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l)

assert Def b == if b True else False fi

Thm* b:. b Prop

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

bor Def p q == if p true else q fi

Thm* p,q:. (p q)

tlambda Def (x:T. b(x))(x) == b(x)

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

lelt Def i j < k == ij & j < k

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

not Def A == A False

Thm* A:Prop. (A) Prop

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

About:
!abstractionspreadalluniversefunctionproductmemberlist_ind
btruebfalselistboolniltokenimpliesnatural_number
falseproprecursive_def_noticeifthenelseapplyless_thanintand
consequalexistsint_eqmultiplysubtracttrueassert
setpairremainderadd