Thms choice 1 Sections AutomataTheory Doc

min_ar Def MinAr(f;i;n) == if (f(n-i))=(f(n)) i else MinAr(f;i-1;n) fi (recursive)

Thm* f:(), n:, i:(n+1). MinAr(f;i;n) (i+1)

nat Def == {i:| 0i }

Thm* Type

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

eq_bool Def p=q == (pq) (pq)

Thm* p,q:. p=q

bnot Def b == if b false else true fi

Thm* b:. b

band Def pq == if p q else false fi

Thm* p,q:. (pq)

bor Def p q == if p true else q fi

Thm* p,q:. (p q)

About:
!abstractionifthenelsebtrueallboolmemberbfalse
impliesfalsepropless_thanintsetnatural_number
universerecursive_def_noticeapplysubtractfunctionadd