Thms choice 1 Sections AutomataTheory Doc

NOTE: This operator coercing a to a Prop is normally invisible since it is pretty obvious when it is needed.

assert Def b == if b True else False fi

Thm* b:. b Prop

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

min_arg Def MinArg(f : {0..n}) == n-MinAr(f;n;n)

Thm* f:(), n:. MinArg(f : {0..n}) (n+1)

nat Def == {i:| 0i }

Thm* Type

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

min_ar Def MinAr(f;i;n) == if (f(n-i))=(f(n)) i else MinAr(f;i-1;n) fi (recursive)

Thm* f:(), n:, i:(n+1). MinAr(f;i;n) (i+1)

le Def AB == B < A

Thm* i,j:. ij Prop

eq_bool Def p=q == (pq) (pq)

Thm* p,q:. p=q

not Def A == A False

Thm* A:Prop. (A) Prop

bnot Def b == if b false else true fi

Thm* b:. b

band Def pq == if p q else false fi

Thm* p,q:. (pq)

bor Def p q == if p true else q fi

Thm* p,q:. (p q)

About:
!abstractionifthenelsebtrueallboolmemberbfalseimplies
falsepropless_thanintrecursive_def_noticeapplysubtractnatural_number
functionadduniversesetandtrueassert