action_set |
Def ActionSet(T) == car:Type![]() ![]() ![]() ![]() ![]() Thm* |
aset_car |
Def a.car == 1of(a)
Thm* |
finite |
Def Fin(s) == ![]() ![]() ![]() ![]() ![]() ![]() Thm* |
int_seg |
Def {i..j![]() ![]() ![]() Thm* |
inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* |
maction |
Def (S:L![]() ![]() ![]()
Thm* |
nat |
Def ![]() ![]() ![]() Thm* |
pi1 |
Def 1of(t) == t.1
Thm* |
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
lelt |
Def i ![]() ![]() |
tidentity |
Def Id == Id
Thm* |
compose |
Def (f o g)(x) == f(g(x))
Thm* |
tl |
Def tl(l) == Case of l; nil ![]() ![]()
Thm* |
hd |
Def hd(l) == Case of l; nil ![]() ![]()
Thm* |
aset_act |
Def a.act == 2of(a)
Thm* |
null |
Def null(as) == Case of as; nil ![]() ![]() ![]() ![]()
Thm*
Thm* null(nil) |
le |
Def A![]() ![]() Thm* |
surject |
Def Surj(A; B; f) == ![]() ![]() Thm* |
inject |
Def Inj(A; B; f) == ![]() ![]() ![]() ![]() Thm* |
identity |
Def Id(x) == x
Thm* |
pi2 |
Def 2of(t) == t.2
Thm* |
not |
Def ![]() ![]() ![]() Thm* |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |