| action_set |
Def ActionSet(T) == car:Type Thm* |
| aset_car |
Def a.car == 1of(a)
Thm* |
| finite |
Def Fin(s) == Thm* |
| ge |
Def i Thm* |
| int_seg |
Def {i..j Thm* |
| inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* |
| nat |
Def Thm* |
| lelt |
Def i |
| le |
Def A Thm* |
| length |
Def ||as|| == Case of as; nil
Thm*
Thm* ||nil|| |
| select |
Def l[i] == hd(nth_tl(i;l))
Thm* |
| pi1 |
Def 1of(t) == t.1
Thm* |
| biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
| tidentity |
Def Id == Id
Thm* |
| compose |
Def (f o g)(x) == f(g(x))
Thm* |
| not |
Def Thm* |
| nth_tl |
Def nth_tl(n;as) == if n
Thm* |
| hd |
Def hd(l) == Case of l; nil
Thm* |
| surject |
Def Surj(A; B; f) == Thm* |
| inject |
Def Inj(A; B; f) == Thm* |
| identity |
Def Id(x) == x
Thm* |
| tl |
Def tl(l) == Case of l; nil
Thm* |
| le_int |
Def i Thm* |
| lt_int |
Def i < Thm* |
| bnot |
Def Thm* |
About: