Thms det automata Sections AutomataTheory Doc

action_set Def ActionSet(T) == car:TypeTcarcar

Thm* T:Type{i}. ActionSet(T) Type{i'}

aset_car Def a.car == 1of(a)

Thm* T:Type, a:ActionSet(T). a.car Type

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

maction Def (S:Ls) == if null(L) s else S.act(hd(L),(S:tl(L)s)) fi (recursive)

Thm* Alph:Type, S:ActionSet(Alph), L:Alph*, s:S.car. (S:Ls) S.car

mem_f Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs') (recursive)

Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

nat Def == {i:| 0i }

Thm* Type

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

aset_act Def a.act == 2of(a)

Thm* T:Type, a:ActionSet(T). a.act Ta.cara.car

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

lelt Def i j < k == ij & j < k

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberspread
universefunctionproductless_thanintequalapply
existsandlist_indbtruebfalselistbool
niltokennatural_numbersetrecursive_def_noticeorifthenelse