action_set |
Def ActionSet(T) == car:Type T car car
Thm* T:Type{i}. ActionSet(T) Type{i'}
|
aset_car |
Def a.car == 1of(a)
Thm* T:Type, a:ActionSet(T). a.car Type
|
finite |
Def Fin(s) == n: , f:( n s). Bij( n; s; f)
Thm* T:Type. Fin(T) Prop
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
maction |
Def (S:L s) == if null(L) s else S.act(hd(L),(S:tl(L) s)) fi (recursive)
Thm* Alph:Type, S:ActionSet(Alph), L:Alph*, s:S.car. (S:L s) S.car
|
mem_f |
Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs')
(recursive)
Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
nat |
Def == {i: | 0 i }
Thm* Type
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
aset_act |
Def a.act == 2of(a)
Thm* T:Type, a:ActionSet(T). a.act T a.car a.car
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
lelt |
Def i j < k == i j & j < k
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|