PrintForm Definitions det automata Sections AutomataTheory Doc

At: reach aux 1 1 1 1 2 2 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. si: S.car
4. Fin(S.car)
5. n:
6. f: nAlph
7. g: Alphn
8. InvFuns(n; Alph; f; g)
9. n1:
10. f1: n1S.car
11. g1: S.carn1
12. InvFuns(n1; S.car; f1; g1)
13. RL: {y:{x:(S.car*)| 0 < ||x|| & ||x||n1+1 }| y[(||y||-1)] = si }
14. ||RL|| = n1+1
15. i:||RL||, j:i. RL[i] = RL[j]
16. s:S.car. mem_f(S.car;s;RL) (w:Alph*. (S:wsi) = s)
17. i: (n1+1)
18. j: i
19. g1(RL[i]) = g1(RL[j])

RL[i] = RL[j]

By: Assert (f1(g1(RL[i])) = f1(g1(RL[j])))

Generated subgoals:

1 f1(g1(RL[i])) = f1(g1(RL[j]))
220. f1(g1(RL[i])) = f1(g1(RL[j]))
RL[i] = RL[j]


About:
equalapplyuniversefunctionnatural_numbersetlistand
less_thanaddsubtractintallimpliesexists