At: reach lemma 1 2 2 1 1 1 4
1. Alph: Type
2. S: ActionSet(Alph)
3. si: S.car
4. nn: 
5. f:
nn
Alph
6. g: Alph

nn
7. Fin(S.car)
8. InvFuns(
nn; Alph; f; g)
9. n: 
10. 0 < n
11. RL: {y:{x:(S.car*)| 0 < ||x|| & ||x||
n-1+1 }| y[(||y||-1)] = si }
12. ||RL|| = n-1+1
13.
i:
||RL||, j:
i.
RL[i] = RL[j]
14.
s:S.car. mem_f(S.car;s;RL) 
(
w:Alph*. (S:w
si) = s)
15.
k:
.
k
nn 
(
RLa:S.car*.
(
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa))
& (
a:Alph. g(a) < k 
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa))
& (
s:S.car. mem_f(S.car;s;RLa) 
(
w:Alph*. (S:w
si) = s)))
16. RLa: S.car*
17.
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa)
18.
a:Alph. g(a) < nn 
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa)
19.
s:S.car. mem_f(S.car;s;RLa) 
(
w:Alph*. (S:w
si) = s)
20. La': S.car*
21.
t:S.car. mem_f(S.car;t;RLa) 
mem_f(S.car;t;RL)
mem_f(S.car;t;La')
22.
t:S.car. mem_f(S.car;t;La') 
mem_f(S.car;t;RLa)
23. ||La'||
1 
mem_f(S.car;hd(La');RL)
24. ||La'||
1
25. R1: {y:{x:(S.car*)| 0 < ||x|| & ||x||
n+1 }| y[(||y||-1)] = si }
26. k: 
27. k
nn
28. R2: S.car*
29. a: Alph
30. g(a) < k
||R1||
1
By:
Analyze 25
THEN
Analyze 25
THEN
UnhideSqStableHyp 27
Generated subgoals:None
About: