PrintForm Definitions det automata Sections AutomataTheory Doc

At: reach lemma 1 2 2 1 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. si: S.car
4. nn:
5. f: nnAlph
6. g: Alphnn
7. Fin(S.car)
8. InvFuns(nn; Alph; f; g)
9. n:
10. 0 < n
11. RL: {y:{x:(S.car*)| 0 < ||x|| & ||x||n-1+1 }| y[(||y||-1)] = si }
12. ||RL|| = n-1+1
13. i:||RL||, j:i. RL[i] = RL[j]
14. s:S.car. mem_f(S.car;s;RL) (w:Alph*. (S:wsi) = s)
15. k:. knn (RLa:S.car*. (i:{1..||RL||}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL) mem_f(S.car;S.act(a,RL[i]);RLa)) & (a:Alph. g(a) < k mem_f(S.car;S.act(a,hd(RL));RL) mem_f(S.car;S.act(a,hd(RL));RLa)) & (s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s)))
16. RLa: S.car*
17. i:{1..||RL||}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL) mem_f(S.car;S.act(a,RL[i]);RLa)
18. a:Alph. g(a) < nn mem_f(S.car;S.act(a,hd(RL));RL) mem_f(S.car;S.act(a,hd(RL));RLa)
19. s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s)
20. La': S.car*
21. t:S.car. mem_f(S.car;t;RLa) mem_f(S.car;t;RL) mem_f(S.car;t;La')
22. t:S.car. mem_f(S.car;t;La') mem_f(S.car;t;RLa)
23. ||La'||1 mem_f(S.car;hd(La');RL)
24. ||La'||1

RL:{y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }. (s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;RL)) ||RL|| = n+1 & (i:||RL||, j:i. RL[i] = RL[j]) & (s:S.car. mem_f(S.car;s;RL) (w:Alph*. (S:wsi) = s)) & (k:. knn (RLa:S.car*. (i:{1..||RL||}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL) mem_f(S.car;S.act(a,RL[i]);RLa)) & (a:Alph. g(a) < k mem_f(S.car;S.act(a,hd(RL));RL) mem_f(S.car;S.act(a,hd(RL));RLa)) & (s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s))))

By: InstConcl [hd(La').RL]

Generated subgoals:

1 hd(La').RL {y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }
2 (s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;hd(La').RL)) ||hd(La').RL|| = n+1 & (i:||hd(La').RL||, j:i. (hd(La').RL)[i] = (hd(La').RL)[j]) & (s:S.car. mem_f(S.car;s;hd(La').RL) (w:Alph*. (S:wsi) = s)) & (k:. knn (RLa:S.car*. (i:{1..||hd(La').RL||}, a:Alph. mem_f(S.car;S.act(a,(hd(La').RL)[i]);hd(La').RL) mem_f(S.car;S.act(a,(hd(La').RL)[i]);RLa)) & (a:Alph. g(a) < k mem_f(S.car;S.act(a,hd((hd(La').RL)));hd(La').RL) mem_f(S.car;S.act(a,hd((hd(La').RL)));RLa)) & (s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s))))
325. R1: {y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }
26. k:
27. knn
28. R2: S.car*
29. a: Alph
30. g(a) < k
||R1||1
425. R1: {y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }
26. k:
27. knn
28. R2: S.car*
29. a: Alph
30. g(a) < k
||R1||1


About:
existssetlistandless_thannatural_number
addequalsubtractorallint
impliesapplyconsuniversefunctionmember