is mentioned by
[dedekind_imp_nonfin] | |
[next_nat_pair_vs_prev_nat_pair] | |
[prev_nat_pair_wf] | |
[next_nat_pair_not_zeroes] | |
[card_split_decbl_squash] | |
Thm* (i:A. Dec(P(i))) Thm* Thm* ((i:AB(i)) ~ ((i:{i:A| P(i) }B(i))+(i:{i:A| P(i) }B(i)))) | [card_split_sigma_dom_decbl] |
[card_split_decbl] | |
[nat_not_finite] | |
[not_nat_occ_natfuns] | |
[absurd_nonfinite_imp_infinite] | |
[nonfin_eqv_unb_inf_iff_negnegelim] | |
[absurd_nonfin_imp_unb_inf] | |
[nsub_not_infinite] | |
[negnegelim_imp_notfin_imp_unb_inf] | |
[infinite_imp_nonfinite] | |
[unb_inf_not_fin] | |
Thm* Thm* ((x:AB(x)) ~ ((x:A st P(x)B(x))(x:A st P(x)B(x)))) | [card_split_prod_intseg_family_decbl] |
Thm* (i:. Dec(P(i))) ({i:| P(i) & (j:. j<i P(j)) }) | [least_exists2] |
Thm* (i:k. Dec(P(i))) ({i:k| P(i) & (j:i. P(j)) }) | [least_exists] |
[decidable_vs_unique_nsub2] | |
[card0_iff_uninhabited] | |
[nsub_delete_rw] | |
[nsub_delete] | |
Thm* ((A) & (Trans x,y:A. R(x;y)) & (x:A. y:A. R(x;y)) Thm* (& (x:A. R(x;x)) Thm* (& Finite(A)) | [no_finite_model] |
[least_is_least2] | |
[least_is_least] | |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
[finite_inj_counter_example] | |
Thm* Thm* (i:m. f(i) = k (Replace value k by f(m) in f)(i) = f(i) k) | [delete_fenum_value_comp2] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Bij({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Bij(Replace value k by f(m) in f)) | [delete_fenum_value_is_fenum_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* (Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k } Thm* (& Inj({u:| P(u) & u = m }; {v:| Q(v) & v = k }; Thm* (& Inj(Replace value k by f(m) in f)) | [delete_fenum_value_is_inj_genW] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(i) {v:| Q(v) & v = k }) | [delete_fenum_value_comp2_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }, i:{u:| P(u) & u = m }. Thm* (f(i) = k Thm* ( Thm* ((Replace value k by f(m) in f)(i) = f(m) {v:| Q(v) & v = k }) | [delete_fenum_value_comp1_gen] |
Thm* Thm* (m:{u:| P(u) }, k:{v:| Q(v) }. Thm* ((Replace value k by f(m) in f) Thm* ( {u:| P(u) & u = m }{v:| Q(v) & v = k }) | [delete_fenum_value_wf_gen] |
Thm* (i.if i=a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
[nsub_inj_lop_typing] | |
[inj_from_empty_unique] | |
[inj_point_deletion_inj] | |
[inj_point_deletion] | |
[Dedekind_infinite] |
In prior sections: core bool 1 rel 1 LogicSupplement int 2 num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html