is mentioned by
[chessboard_example] | |
[card_st_sized_bool] | |
[card_st_vs_boolsize] | |
Thm* (i:a. P(i) f(i) = 1 2) ({x:a| P(x) } ~ (Msize(f))) | [card_st_vs_msize] |
[card_boolset_vs_mset] | |
[nsub_bij_ooc_invpair] | |
[nsub_inj_ooc_nsub_surj] | |
[nsub_inj_ooc_nsub_bij] | |
[nsub_surj_ooc_nsub_bij] | |
[card_nat_vs_nat_tuples_all] | |
[card_nat_vs_nat_tuples] | |
[card_nat_vs_nat_tuple] | |
[card_nat_vs_nat_nat] | |
[inv_pair_inv2] | |
[inv_pair_inv] | |
[card_sigma_vs_nsub_sigma] | |
[nsub_add_rw] | |
[card_curry_simple2] | |
[card_fun_vs_nsub_exp] | |
[card_pi_vs_nsub_pi] | |
[nsub_inj_factorial] | |
[nsub_inj_factorial_tail] | |
[nsub_inj_factorial2] | |
[finite_indep_sum_card] | |
[nsub_mul_rw] | |
[nsub_mul] | |
[nsub_add] | |
[intseg_split] | |
[nsub_intiseg_rw] | |
[intiseg_intseg_plus] | |
[intiseg_intseg] | |
[nsub_intseg_rw] | |
[nsub_intseg] | |
[nsub_bool] | |
[nsub_unit] | |
[intseg_shift_by] | |
[intseg_shift] | |
[nsub_void] | |
[intseg_void] | |
[card_sigma_distr] | |
[card_curry] | |
[card_curry_simple] | |
[function_functionality_wrt_one_one_corr] | |
[function_functionality_wrt_one_one_corr_B] | |
[card_pi] | |
Thm* a<b ((i:{a..b}B(i)) ~ ((i:{a..(b-1)}B(i))+B(b-1))) | [card_split_end_sum_intseg_family] |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))+(i:{c..b}B(i))) | [card_split_sum_intseg_family] |
[card_split_decbl_squash] | |
[card_nsub0_union_2] | |
[card_nsub0_union] | |
Thm* (i:A. Dec(P(i))) Thm* Thm* ((i:AB(i)) ~ ((i:{i:A| P(i) }B(i))+(i:{i:A| P(i) }B(i)))) | [card_split_sigma_dom_decbl] |
Thm* (i:{i:A| P(i) }B(i)) ~ {v:(i:AB(i))| P(v/x,y. x) } | [card_sigma_st_dom] |
[card_split_decbl] | |
[card_union_vs_sigma] | |
[card_union_swap] | |
Thm* (i:{a..b}B(i)) ~ ((i:{a..c}B(i))(i:{c..b}B(i))) | [card_split_prod_intseg_family] |
[product_functionality_wrt_one_one_corr] | |
[card_quotient] | |
[product_functionality_wrt_one_one_corr_B] | |
[card_sigma] | |
[set_functionality_wrt_one_one_corr_n_pred] | |
[set_functionality_wrt_one_one_corr_n_pred2] | |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype_sq] |
Thm* Thm* (x:A. B(x) B'(f(x))) ({x:A| B(x) } ~ {x:A'| B'(x) }) | [card_settype] |
[card_product_swap] | |
[union_functionality_wrt_one_one_corr] | |
[one_one_corr_fams_indep_if_one_one_corr] | |
[one_one_corr_fams_if_one_one_corr_B] | |
[partition_type] | |
[fin_card_vs_nat_eq] | |
[counting_is_unique] | |
[not_nat_occ_natfuns] | |
[bij_iff_1_1_corr_version2a] | |
[ooc_preserves_infiniteness] | |
[ooc_preserves_unb_inf] | |
[int_ooc_nat] | |
[bij_iff_1_1_corr_version2] | |
[one_one_corr_2_transitivity] | |
[one_one_corr_2_inversion] | |
[one_one_corr_2_reflex] | |
[one_one_corr_2_functionality_wrt_one_one_corr] | |
[inhabited_functionality_wrt_one_one_corr] | |
[iff_weakening_wrt_one_one_corr_2] | |
[one_one_corr_is_equiv_rel] | |
[injection_type_functionality_wrt_ooc] | |
[ooc_preserves_dededkind_inf] | |
[surjection_type_functionality_wrt_ooc] | |
Thm* Thm* ((x:AB(x)) ~ ((x:A st P(x)B(x))(x:A st P(x)B(x)))) | [card_split_prod_intseg_family_decbl] |
[one_one_corr_iff_one_one_corr_2] | |
[inv_pair_functionality_wrt_one_one_corr] | |
[inv_pair_iff_ooc] | |
[card_sum_family_intseg_singleton_elim] | |
[card_sum_family_singleton_elim] | |
[card0_iff_uninhabited] | |
[one_one_corr_2_weakening_wrt] | |
[subset_sq_remove_card] | |
[card_prod_family_intseg_singleton_elim] | |
[card_prod_family_singleton_elim] | |
[card_nsub_inj_vs_lopped] | |
[nsub_delete_rw] | |
[nsub_delete] | |
[card_void_dom_fun_unit] | |
[card1_iff_inhabited_uniquely] | |
Thm* a'-a = 1 (B:({a..a'}Type). (i:{a..a'}B(i)) ~ ({a:}B(a))) | [card_sum_family_singleton_vs_intseg] |
[card_subset_vs_and] | |
[ifthenelse_distr_subtype_ooc] | |
[bijtype_ooc_inj_isect_surjtype] | |
[simple_card_cross_assoc] | |
[ooc_preserves_finiteness] | |
[nat_plus_ooc_nat] | |
[fin_plus_nat_ooc_nat] | |
[one_one_corr_2_functionality_wrt_eq] | |
[is_finite_type] |
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html