Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef  b == if b True else False fi
Thm*  b:b  Prop
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
is_discreteDef  A Discrete == x,y:A. Dec(x = y)
Thm*  A:Type. (A Discrete)  Prop
leastDef  least i:p(i) == if p(0) 0 else (least i:p(i+1))+1 fi  (recursive)
Thm*  k:p:{p:(k)| i:kp(i) }. (least i:p(i))  k
Thm*  p:{p:()| i:p(i) }. (least i:p(i))  
natDef   == {i:| 0i }
Thm*    Type

About:
boolifthenelseassertintnatural_numberaddset
functionrecursive_def_noticeuniverseequalmemberprop
impliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc