| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
least | Def least i:. p(i) == if p(0) 0 else (least i:. p(i+1))+1 fi (recursive) |
| | Thm* k:, p:{p:(k)| i:k. p(i) }. (least i:. p(i)) k |
| | Thm* p:{p:()| i:. p(i) }. (least i:. p(i)) |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |