Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
int_isegDef  {i...j} == {k:ik & kj }
Thm*  i,j:. {i...j Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
iter_via_intsegDef  Iter(f;ui:{a..b}. e(i)
Def  == if a<b f(Iter(f;ui:{a..b-1}. e(i),e(b-1)) else u fi
Def  (recursive)
Thm*  f:(AAA), u:Aa,b:e:({a..b}A). (Iter(f;ui:{a..b}. e(i))  A
natDef   == {i:| 0i }
Thm*    Type
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop

About:
ifthenelseintnatural_numbersubtractsetapplyfunction
recursive_def_noticeuniversememberpropandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc