| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC |
| | Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
| | Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
compose_iter | Def f{i}(x) == if i=0 x else f(f{i-1}(x)) fi (recursive) |
| | Thm* f:(AA), i:. f{i} AA |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |