Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
composeDef  (f o g)(x) == f(g(x))
Thm*  A,B,C:Type, f:(BC), g:(AB). f o g  AC
Thm*  A,B,C:Type, f:(B inj C), g:(A inj B). f o g  A inj C
Thm*  f:(B onto C), g:(A onto B). f o g  A onto C
compose_iterDef  f{i}(x) == if i=0 x else f(f{i-1}(x)) fi  (recursive)
Thm*  f:(AA), i:f{i AA
natDef   == {i:| 0i }
Thm*    Type

About:
ifthenelseintnatural_numbersubtractsetapply
functionrecursive_def_noticeuniversememberall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc