| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B![](FONT/dash.png) C), g:(A![](FONT/dash.png) B). f o g A![](FONT/dash.png) C |
| | Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
| | Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
compose_iter | Def f{ i}(x) == if i= 0 x else f(f{ i-1}(x)) fi (recursive) |
| | Thm* f:(A![](FONT/dash.png) A), i: . f{ i} A![](FONT/dash.png) A |
|
int_iseg | Def {i...j} == {k: | i k & k j } |
| | Thm* i,j: . {i...j} Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |