Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
composeDef  (f o g)(x) == f(g(x))
Thm*  A,B,C:Type, f:(BC), g:(AB). f o g  AC
Thm*  A,B,C:Type, f:(B inj C), g:(A inj B). f o g  A inj C
Thm*  f:(B onto C), g:(A onto B). f o g  A onto C
compose_iterDef  f{i}(x) == if i=0 x else f(f{i-1}(x)) fi  (recursive)
Thm*  f:(AA), i:f{i AA
int_isegDef  {i...j} == {k:ik & kj }
Thm*  i,j:. {i...j Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
ifthenelseintnatural_numbersubtractless_thansetapplyfunction
recursive_def_noticeuniversememberpropimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc