| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
|
| Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
| Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
|
| Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
compose_iter | Def f{ i}(x) == if i= 0 x else f(f{ i-1}(x)) fi (recursive) |
|
| Thm* f:(A A), i: . f{ i} A A |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |
|
le | Def A B == B<A |
|
| Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
|
| Thm* A:Prop. ( A) Prop |