Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
compose_iterDef  f{i}(x) == if i=0 x else f(f{i-1}(x)) fi  (recursive)
Thm*  f:(AA), i:f{i AA
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop

About:
boolbfalsebtrueifthenelseintnatural_numbersubtract
int_eqapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc