| Some definitions of interest. |
|
compose_iter | Def f{ i}(x) == if i= 0 x else f(f{ i-1}(x)) fi (recursive) |
| | Thm* f:(A A), i: . f{ i} A A |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop |