| Some definitions of interest. |
|
compose_iter | Def f{ i}(x) == if i= 0 x else f(f{ i-1}(x)) fi (recursive) |
| | Thm* f:(A A), i: . f{ i} A A |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
| | Thm* f:(A B), g:(B A). InvFuns(A;B;f;g) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |