Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eqfun_pDef  IsEqFun(T;eq) == x,y:T(x eq y x = y
Thm*  T:Type, eq:(TT). IsEqFun(T;eq Prop
assertDef  b == if b True else False fi
Thm*  b:b  Prop
injection_typeDef  A inj B == {f:(AB)| Inj(ABf) }
Thm*  A,B:Type. A inj B  Type
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
leastDef  least i:p(i) == if p(0) 0 else (least i:p(i+1))+1 fi  (recursive)
Thm*  k:p:{p:(k)| i:kp(i) }. (least i:p(i))  k
Thm*  p:{p:()| i:p(i) }. (least i:p(i))  
natDef   == {i:| 0i }
Thm*    Type
surjection_typeDef  A onto B == {f:(AB)| Surj(ABf) }
Thm*  A,B:Type. A onto B  Type
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
boolifthenelseassertintnatural_numberaddset
applyfunctionrecursive_def_noticeuniverseequalmember
propimpliesfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc