| Some definitions of interest. |
|
bijection_type | Def A bij B == {f:(A B)| Bij(A; B; f) } |
| | Thm* A,B:Type. A bij B Type |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
| | Thm* f:(A B), g:(B A). InvFuns(A;B;f;g) Prop |
|
least | Def least i: . p(i) == if p(0) 0 else (least i: . p(i+1))+1 fi (recursive) |
| | Thm* k: , p:{p:( k  )| i: k. p(i) }. (least i: . p(i)) k |
| | Thm* p:{p:(   )| i: . p(i) }. (least i: . p(i))  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |