Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bijection_typeDef  A bij B == {f:(AB)| Bij(ABf) }
Thm*  A,B:Type. A bij B  Type
bijectDef  Bij(ABf) == Inj(ABf) & Surj(ABf)
Thm*  A,B:Type, f:(AB). Bij(ABf Prop
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
leastDef  least i:p(i) == if p(0) 0 else (least i:p(i+1))+1 fi  (recursive)
Thm*  k:p:{p:(k)| i:kp(i) }. (least i:p(i))  k
Thm*  p:{p:()| i:p(i) }. (least i:p(i))  
natDef   == {i:| 0i }
Thm*    Type
subtypeDef  S  T == x:Sx  T
surjection_typeDef  A onto B == {f:(AB)| Surj(ABf) }
Thm*  A,B:Type. A onto B  Type

About:
boolbfalsebtrueifthenelseassertintnatural_numberadd
int_eqsetapplyfunctionrecursive_def_notice
universeequalmembersubtypepropandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc