Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
sized_boolDef  a {k}  == {p:(a)| size(a)(p) = k }
Thm*  a,k:a {k}   Type
sized_msetDef  a {k} T == {p:(aT)| Msize(p) = k }
Thm*  a,k:a {k}   Type
Thm*  a,k,x:y:a {k} {x..y Type
Thm*  a,k,x:y:a {k} {x...y Type
Thm*  a,k:a {k}   Type
Thm*  a,k,x:a {k} {x...}  Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
natDef   == {i:| 0i }
Thm*    Type

About:
boolbfalsebtrueintnatural_numberint_eqsetapply
functionuniverseequalmemberpropandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc