| Some definitions of interest. |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
sized_bool | Def a {k} == {p:( a  )| size( a)(p) = k } |
| | Thm* a,k: . a {k} Type |
|
sized_mset | Def a {k} T == {p:( a T)| Msize(p) = k } |
| | Thm* a,k: . a {k} Type |
| | Thm* a,k,x: , y: . a {k} {x..y } Type |
| | Thm* a,k,x: , y: . a {k} {x...y} Type |
| | Thm* a,k: . a {k}  Type |
| | Thm* a,k,x: . a {k} {x...} Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
one_one_corr_2 | Def A ~ B == f:(A B), g:(B A). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
| | Thm* f:(A B), g:(B A). InvFuns(A;B;f;g) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |