Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef  b == if b True else False fi
Thm*  b:b  Prop
sized_boolDef  a {k}  == {p:(a)| size(a)(p) = k }
Thm*  a,k:a {k}   Type
boolsizeDef  size(a)(p) == Msize(x.if p(x) 1 else 0 fi)
Thm*  a:size(a (a)
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
sized_msetDef  a {k} T == {p:(aT)| Msize(p) = k }
Thm*  a,k:a {k}   Type
Thm*  a,k,x:y:a {k} {x..y Type
Thm*  a,k,x:y:a {k} {x...y Type
Thm*  a,k:a {k}   Type
Thm*  a,k,x:a {k} {x...}  Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type

About:
boolbfalsebtrueifthenelseassertintnatural_number
int_eqsetlambdaapplyfunction
universeequalmemberpropfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc