(2steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Composing bijections gives a bijection.
At:
comp
preserves
bij
A
,
B
,
C
:Type,
g
:(
A
B
),
f
:(
B
C
).
Bij(
A
;
B
;
g
)
Bij(
B
;
C
;
f
)
Bij(
A
;
C
;
f
o
g
)
By:
Def of Bij(<A>; <B>; <f>) THEN UnivCD
Generated subgoal:
1
1.
A
: Type
2.
B
: Type
3.
C
: Type
4.
g
:
A
B
5.
f
:
B
C
6. Inj(
A
;
B
;
g
) & Surj(
A
;
B
;
g
)
7. Inj(
B
;
C
;
f
) & Surj(
B
;
C
;
f
)
Inj(
A
;
C
;
f
o
g
) & Surj(
A
;
C
;
f
o
g
)
1
step
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(2steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc