(25steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Principle of dependent finite choice. The function can be constructed explicitly without appeal to the
Dependent Axiom of Choice
.
At:
dep
finite
choice
k
:
,
B
:(
k
Type),
Q
:(
x
:
k
B
(
x
)
Prop).
(
x
:
k
.
y
:
B
(
x
).
Q
(
x
;
y
))
(
f
:(
x
:
k
B
(
x
)).
x
:
k
.
Q
(
x
;
f
(
x
)))
By:
CompNatInd Concl
Generated subgoal:
1
1.
k
:
2.
k1
:
.
2.
k1
<
k
2.
2.
(
B
:(
k1
Type),
Q
:(
x
:
k1
B
(
x
)
Prop).
2. (
(
x
:
k1
.
y
:
B
(
x
).
Q
(
x
;
y
))
(
f
:(
x
:
k1
B
(
x
)).
x
:
k1
.
Q
(
x
;
f
(
x
))))
3.
B
:
k
Type
4.
Q
:
x
:
k
B
(
x
)
Prop
5.
x
:
k
.
y
:
B
(
x
).
Q
(
x
;
y
)
f
:(
x
:
k
B
(
x
)).
x
:
k
.
Q
(
x
;
f
(
x
))
24
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(25steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc