(15steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Principle of finite choice. The function can be constructed explicitly without appeal to the
Axiom of Choice
.
At:
finite
choice
A
:Type,
k
:
,
Q
:(
k
A
Prop).
(
x
:
k
.
y
:
A
.
Q
(
x
;
y
))
(
f
:(
k
A
).
x
:
k
.
Q
(
x
;
f
(
x
)))
By:
Analyze THEN CompNatInd Concl
Generated subgoal:
1
1.
A
: Type
2.
k
:
3.
k1
:
.
3.
k1
<
k
3.
3.
(
Q
:(
k1
A
Prop).
3. (
(
x
:
k1
.
y
:
A
.
Q
(
x
;
y
))
(
f
:(
k1
A
).
x
:
k1
.
Q
(
x
;
f
(
x
))))
4.
Q
:
k
A
Prop
5.
x
:
k
.
y
:
A
.
Q
(
x
;
y
)
f
:(
k
A
).
x
:
k
.
Q
(
x
;
f
(
x
))
14
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(15steps total)
PrintForm
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc