(19steps total) PrintForm Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: nat to nat pair surj 1 1 1 3

1. k : 
2. k1:k1<k  (x,y:x+y = k1  (a:. nat_to_nat_pair(a) = <x,y>))
3. x : 
4. x1:x1<x  (y:x1+y = k  (a:. nat_to_nat_pair(a) = <x1,y>))
5. y : 
6. x+y = k
7. x = 0
  a:. nat_to_nat_pair(a) = <x,y>


By: Use:[x-1 | y+1] Inst: {inner inductive hyp } Hyp:4 THEN New:n Analyze-1


Generated subgoal:

1 8. n : 
9. nat_to_nat_pair(n) = <x-1,y+1>  
  a:. nat_to_nat_pair(a) = <x,y>

5 steps

About:
pairproductintnatural_numberaddsubtractless_thanapplyequalimpliesallexists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(19steps total) PrintForm Definitions DiscreteMath Sections DiscrMathExt Doc