Thms exponent Sections AutomataTheory Doc

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

nat_plus Def == {i:| 0 < i }

Thm* Type

not Def A == A False

Thm* A:Prop. (A) Prop

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

About:
!abstractionint_eqbtruebfalseallintmember
boolimpliesfalsepropsetless_thannatural_number
universerecursive_def_noticeifthenelsemultiplysubtract