Thms exponent Sections AutomataTheory Doc

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_than
intandint_eqbtruebfalseboolset
natural_numberuniverserecursive_def_noticeifthenelsemultiplysubtract