Thms exponent Sections AutomataTheory Doc

exp Def (basepower) == if power=0 1 else base(basepower-1) fi (recursive)

Thm* n,k:. (nk)

Thm* n,k:. (nk)

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

eq_int Def i=j == if i=j true ; false fi

Thm* i,j:. i=j

About:
!abstractionint_eqbtruebfalseallintmemberbool
spreaduniversefunctionproductimpliesfalsepropless_than
andsetnatural_numberrecursive_def_noticeifthenelsemultiplysubtract